International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 Vol. 3, Issue 3, May 2014, 123-138 © IASET

LARGE SCALE ROUGHNESS

BIRENDRA KUMAR SINGH & ANAND KUMAR SINHA

Department of Civil Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

ABSTRACT

Large scale roughness and intermediate scale roughness depend upon $\frac{d}{D_{50}}$ and $\frac{d}{D_{84}}$ where D_{50} = the size of the median axis which is bigger than or equal to 50% of median axis. Similarly D_{84} = The size of the median axis which is bigger than or equal to 84% of median axis. For large scale roughness $\frac{d}{D_{50}}$ <2 and $\frac{d}{D_{84}}$ <1.2 and for intermediate

scale roughness 2< $\frac{d}{D_{50}}$ <7.5 and 1.2 < $\frac{d}{D_{84}}$ <4.

Subject Headings: Boulders, channels, Drag, Flow resistance, Flumes

KEYWORDS: Open Channel Flow, Flow Resistance, Friction Factor

INTRODUCTION

Since size of 2.0 inch roughness material is more i.e. D_{50} is more hence $\frac{d}{D_{50}}$ is lesser than 0.75 inch roughness

bed. Since velocity of flow is more for 0.75 inch roughness bed and chezy's resistance factor depends upon velocity of flow and roughness is more effective in high velocity of flow hence chezy's resistance factor C is more for 0.75 inch roughness bed.

Experimental Setup & Procedures: Data were obtained for 0.75 inch and 2.0 inch roughness bed.

Flume: The flume is open and 1.168 m wide and 9.54 m long. Each roughness bed was constructed by smearing masonite boards with fiberglass resin. The boards were then screwed to the bed of the flume.

Experimental Procedure: For each bed, five to seven flows were measured for three different slopes (2, 5 and 8%). At each flow, depth was gaged at a single cross section, so that mean flow and channel properties could be calculated. In flow with large scale roughness, the cross-sectional area of flow is significantly affected by the projections of the elements into the flow.

Roughness depends upon
$$\frac{d}{D_{50}}$$
 and $\frac{d}{D_{84}}$. For large scale roughness $\frac{d}{D_{50}}$ <2 and $\frac{d}{D_{84}}$ <1.2 where d is the

mean depth of flow and D_{50} = the size of the median axis which is bigger than or equal to 50% of median axis. Similarly

 D_{84} = The size of the median axis which is bigger than or equal to 84% of median axis. Similarly for Intermediate Scale

roughness 2<
$$\frac{d}{D_{50}}$$
 <7.5 and 1.2 < $\frac{d}{D_{84}}$ <4.

Sl. No.	Channel	Discharge in	Mean Velocity	Mean
(1)	Slope	Cubic Meters	in Meters per	Depth d in
	(2)	per Second (3)	Second (4)	Meters (5)
1	0.02	0.00580	0.222	0.0223
2	0.02	0.01181	0.348	0.0290
3	0.02	0.02482	0.484	0.0439
4	0.02	0.04047	0.586	0.0591
5	0.02	0.05348	0.656	0.0698
6	0.05	0.00381	0.230	0.0141
7	0.05	0.00843	0.363	0.0199
8	0.05	0.02037	0.583	0.0299
9	0.05	0.03333	0.782	0.0365
10	0.05	0.04586	0.904	0.0434
11	0.05	0.05460	0.979	0.0477
12	0.08	0.00207	0.186	0.0095
13	0.08	0.00631	0.380	0.0142
14	0.08	0.01007	0.430	0.0200
15	0.08	0.02825	0.807	0.0299
16	0.08	0.04518	1.032	0.0375
17	0.08	0.04879	1.064	0.0392

Table 1: Flume Data for 0.75 Inch Roughness Bed

Table 2: Flume Data for 0.75 Inch Roughness Bed D_{50} =0.013m, D_{84} =0.0193m

Sl. No. (1)	$\frac{d}{D_{50}}$ (2)	$\frac{d}{D_{84}}$ (3)	Depth d' of Bed Datum in Meters (4)	RelativeRoughness Area $\frac{Aw}{Wd'}$ (5)	Function of Effective Roughness Concentration b (6)
1	1.715	1.155	0.0282	0.2081	0.397
2	2.231	1.503	0.0349	0.1696	0.480
3	3.377	2.275	0.0495	0.1146	0.660
4	4.546	3.062	0.0642	0.0801	0.846
5	5.369	3.617	0.0746	0.0641	0.975
6	1.085	0.731	0.0204	0.3052	0.269
7	1.531	1.031	0.0262	0.2411	0.349
8	2.300	1.549	0.0360	0.1709	0.482
9	2.808	1.891	0.0426	0.1433	0.560
10	3.338	2.249	0.0491	0.1156	0.655
11	3.669	2.472	0.0536	0.1090	0.693
12	0.731	0.492	0.0159	0.4031	0.189
13	1.092	0.736	0.0211	0.3253	0.255
14	1.538	1.036	0.0258	0.2222	0.370
15	2.300	1.549	0.0363	0.1742	0.477
16	2.885	1.943	0.0435	0.1382	0.575
17	3.015	2.031	0.0450	0.1285	0.605

Sl. No. (1)	Hydraulic Radius $\mathbf{R} = \frac{A}{P} = \frac{Wd}{W+2d}$ (2)	Chezy's Resistance Factor c (3)	Manning's Roughness Coefficient n (4)
1	0.021	10.832	0.071
2	0.028	14.706	0.055
3	0.040	17.112	0.050
4	0.054	17.758	0.051
5	0.063	18.481	0.050
6	0.013	9.021	0.078
7	0.019	11.777	0.065
8	0.029	15.310	0.053
9	0.035	18.693	0.045
10	0.041	19.966	0.043
11	0.044	20.872	0.042
12	0.009	6.932	0.096
13	0.014	11.355	0.063
14	0.019	11.029	0.069
15	0.029	16.754	0.049
16	0.035	19.503	0.043
17	0.037	19.557	0.043

Table 3: Flume Data for 0.75 Inch Roughness Bed

Table 4: Flume Data for 0.75 Inch Roughness Bed. S_{50} =0.008 m

Sl. No. (1)	Relative Submergence $\frac{d}{S_{50}}$ (2)	
1	2.790	
2	3.626	
3	5.482	
4	7.383	
5	8.728	
6	1.768	
7	2.484	
8	3.736	
9	4.557	
10	5.428	
11	5.965	
12	1.190	
13	1.776	
14	2.505	
15	3.743	
16	4.682	
17	4.905	

Tuble et i fume Dum for 200 men Roughlebb Deu				
Sl. No. (1)	Channel Slope (2)	Discharge in Cubic Meters per Second (3)	Mean Velocity in Meters per Second (4)	Mean Depth d in Meters (5)
1	0.02	0.00329	0.100	0.0282
2	0.02	0.00837	0.189	0.0378
3	0.02	0.01158	0.227	0.0436
4	0.02	0.02541	0.377	0.0578
5	0.02	0.04047	0.519	0.0668
6	0.02	0.04949	0.601	0.0705
7	0.05	0.00329	0.132	0.0213
8	0.05	0.00713	0.214	0.0285
9	0.05	0.01413	0.337	0.0359
10	0.05	0.02068	0.431	0.0411
11	0.05	0.02941	0.542	0.0465
12	0.05	0.04368	0.643	0.0582
13	0.08	0.00247	0.162	0.0130
14	0.08	0.00565	0.205	0.0236
15	0.08	0.01077	0.313	0.0295
16	0.08	0.02187	0.515	0.0363
17	0.08	0.03249	0.637	0.0437
18	0.08	0.03724	0.712	0.0488

Table 5: Flume Data for 2.0 Inch Roughness Bed

Table 6: Flume Data for 2.0 Inch Roughness Bed

Sl. No. (1)	Hydraulic Radius $\mathbf{R} = \frac{Wd}{W+2d} (2)$	Depth d' of Bed Datum in Meters (3)	Relative RoughnessArea $\frac{Aw}{Wd'}$ (4)	Function of Effective Roughness Concentration b (5)
1	0.027	0.0505	0.4413	0.220
2	0.036	0.0611	0.3814	0.281
3	0.041	0.0665	0.3443	0.324
4	0.053	0.0795	0.2735	0.431
5	0.060	0.0892	0.2511	0.483
6	0.063	0.0947	0.2553	0.486
7	0.021	0.0442	0.5179	0.164
8	0.027	0.0513	0.4450	0.218
9	0.034	0.0575	0.3750	0.282
10	0.038	0.0633	0.3508	0.313
11	0.043	0.0688	0.3252	0.348
12	0.053	0.0788	0.2617	0.447
13	0.013	0.0411	0.6842	0.084
14	0.023	0.0505	0.5330	0.161
15	0.028	0.0551	0.4646	0.208
16	0.034	0.0659	0.4483	0231
17	0.041	0.0747	0.4155	0.267
18	0.041	0.0701	0.3615	0.312

Sl. No. (1)	$\frac{d}{D_{50}}$ (2)	$\frac{d}{D_{84}}$ (3)	Manning's Roughness Coefficient n (4)	Chezy's Resistance Coefficient C (5)
1	0.656	0.600	0.186	4.303
2	0.879	0.804	0.120	7.044
3	1.014	0.928	0.109	7.927
4	1.344	1.230	0.078	11.579
5	1.553	1.421	0.061	14.892
6	1.640	1.500	0.055	16.931
7	0.495	0.453	0.190	4.074
8	0.633	0.606	0.139	5.824
9	0.835	0.764	0.103	8.173
10	0.956	0.874	0.087	9.888
11	1.081	0.989	0.075	11.689
12	1.353	1.238	0.073	12.491
13	0.302	0.277	0.141	5.023
14	0.549	0.502	0.164	4.779
15	0.686	0.628	0.123	6.613
16	0.844	0.772	0.085	9.875
17	1.016	0.930	0.078	11.123
18	1.042	0.953	0.070	12.432

Table 7: Flume Data for 2.0 Inch Roughness Bed. $D_{50} = 0.043 \text{ m}, D_{84} = 0.047 \text{m}$

Table 8: Flume Data	for 2.0 Inch	Roughness B	ed. S ₅₀ =0.02975 m

Sl. No. (1)	Relative Submergence $\frac{d}{S_{50}}$ (2)
1	0.947
2	1.269
2 3 4	1.463
4	1.938
5	2.241
6	2.367
7	0.715
8	0.956
9	1.206
10	1.379
11	1.559
12	1.952
13	0.436
14	0.792
15	0.989
16	1.219
17	1.466
19	1.502

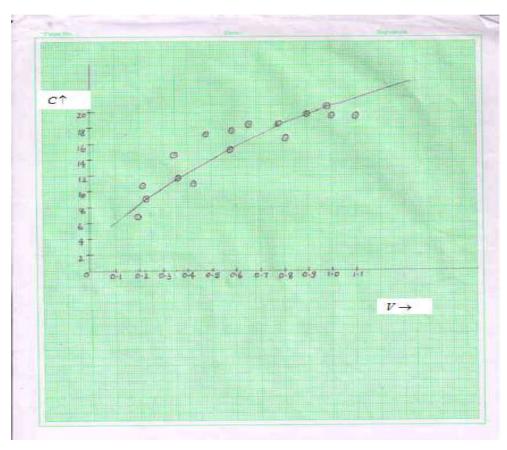


Figure 1: Variation of Parameter Chezy's Resistance Coefficient with Parameter Mean Velocity of Flow V for 0.75 Inch Roughness Bed

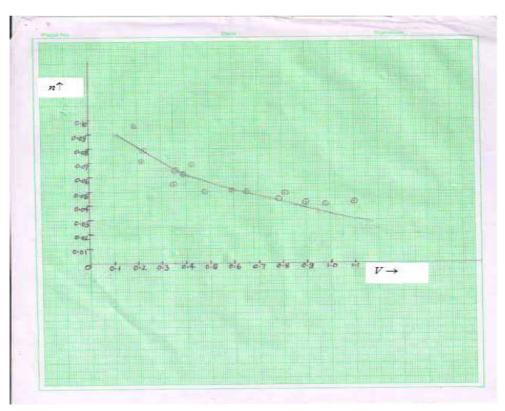


Figure 2: Variation of Parameter Manning's Roughness Coefficient with Parameter Mean Velocity of Flow for 0.75 Inch Roughness Bed

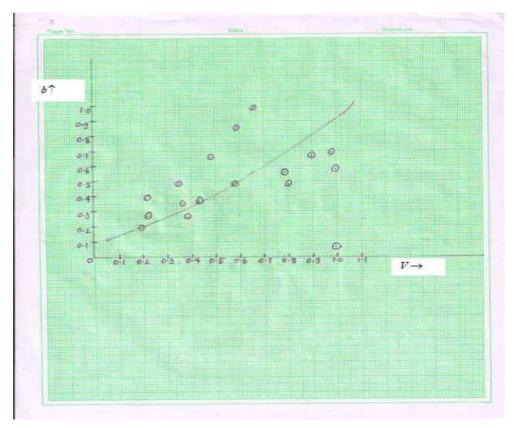


Figure 3: Variation of Parameter Function of Effective Roughness Concentration with Parameter Mean Velocity of Flow for 0.75 Inch Roughness Bed

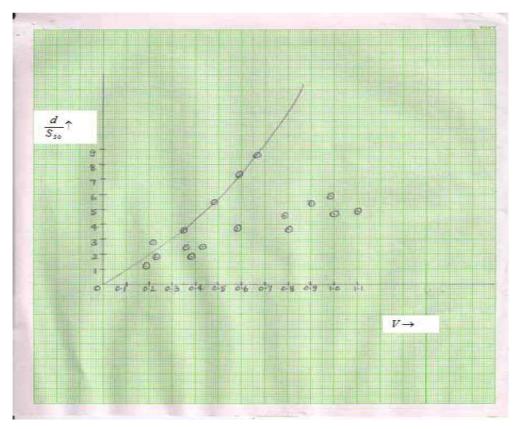


Figure 4: Variation of Parameter Relative Submergence with Parameter Mean Velocity of Flow for 0.75 Inch Roughness Bed

RESULTS AND ANALYSIS

0.75 Inch Roughness Bed

Average Values

$$\frac{d}{D_{50}} = 2.561$$
C = 15.274
n = 0.057
b = 0.520
$$\frac{d}{S_{50}} = 4.162$$

2.0 Inch Roughness Bed

$\frac{d}{D_{50}}$	=	0.939
Chezy's resistance factor C	=	9.153
Manning's roughness coefficient n	=	0.108
Function of effective roughness concentration b	=	0.292
Relative submergence $\frac{d}{S_{50}}$	=	1.355

Since size of 2.0 inch roughness material is more i.e. D_{50} is more hence $\frac{d}{D_{50}}$ is lesser than 0.75 inch roughness bed. More size of the roughness material provides more roughness hence there is 2.727 times more roughness for 2.0 inch roughness bed as compared to 0.75 inch roughness bed with respect to $\frac{d}{D_{50}}$. Since D_{50} is more for 2.0 inch roughness

bed hence $\frac{d}{D_{50}}$ is lesser for 2.0 inch roughness bed. Since velocity of flow is more for 0.75 inch roughness bed

& chezy's resistance factor depends upon velocity of flow since roughness is more effective is high velocity of flow hence C is more for 0.75 inch roughness bed. There is 1.668 times more C for 0.75 inch roughness bed as compared to 2.0 inch roughness bed.

Since Manning's roughness coefficient is lesser for high velocity of flow hence there is 1.895 times lesser Manning's roughness coefficient for 0.75 inch roughness bed as compared to 2.0 inch roughness bed.

Since velocity of flow is more for 0.75 inch roughness bed and roughness is more effective is high velocity of flow to get more wetted frontal cross sectional area hence there is 1.781 times more b for 0.75 inch roughness bed as compared to 2.0 inch roughness bed. There is 0.0142 m depth of water over 0.75 inch size of roughness material whereas

Impact Factor (JCC): 2.6676

Index Copernicus Value (ICV): 3.0

Large Scale Roughness

there is 0.011 m is unsubmerged for 2.0 inch roughness bed and function of effective roughness concentration depends upon wetted frontal cross sectional area hence b is more for 0.75 inch roughness bed as compared to 2.0 inch roughness bed.

Since velocity of flow is more for 0.75 inch roughness bed as roughness is more effective in high velocity of flow to get more submergence hence relative submergence is more for 0.75 inch roughness bed as compared to 2.0 inch roughness bed hence there is 3.072 times more relative submergence for 0.75 inch roughness bed as compared to 2.0 inch roughness bed.

Since b depends upon wetted frontal cross sectional area and relative submergence depends upon the submergence factor since submergence is more as compared to wetted frontal cross sectional area hence this is more increase in relative submergence as compared to function of effective roughness concentration.

0.75 Inch Roughness Bed

Relationship for
$$\frac{d}{D_{50}}$$
 with C, n, b and $\frac{d}{S_{50}}$

$$\frac{d}{D_{50}} = 0.491 \left(C\right)^{0.998} - 0.898 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.930 \left(n\right)^{1.075} - 0.927 \left(b\right)^{1.079}$$
(1)

Relationship for C with n, b and $\frac{d}{S_{50}}$

$$C = 3.222 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.927 \ (b)^{1.079} - 0.930 (n)^{1.075}$$
(2)

Relationship for n with C, b and $\frac{d}{S_{50}}$

$$n = 1.002 (c)^{0.998} x \ 0.592 (b)^{1.079} - 0.898 \left(\frac{d}{S_{50}}\right)^{1.114}$$
(3)

Another form of equation n

$$n = 1.002 (c)^{0.998} x \ 0.021 (b)^{1.079} - \frac{0.927 (b)^{1.079}}{0.898 \left(\frac{d}{S_{50}}\right)^{1.114}}$$
(4)

Relationship for and $\frac{d}{S_{50}}$ with C, n and b

Birendra Kumar Singh & Anand Kumar Sinha

$$\frac{d}{S_{50}} = 0.307 (C)^{0.998} - 0.927 (b)^{1.079} - 0.930 (n)^{1.075}$$
(5)

Relationship for b with C, $\frac{d}{S_{50}}$ and n

$$b = 0.327 (C)^{0.998} - 898 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.930 (n)^{1.075}$$
(6)

Relationship for C with $\frac{d}{D_{50}}$, n, b and $\frac{d}{S_{50}}$

$$C = 3.744 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.930(n)^{1.075} - 0.927(b)^{1.079} - 0.898 \left(\frac{d}{D_{50}}\right)^{1.113}$$
(7)

Relationship for $\frac{d}{S_{50}}$ with n, b and $\frac{d}{D_{50}}$

$$\frac{d}{S_{50}} = 1.637 \left(\frac{d}{D_{50}}\right)^{1.113} - 0.927 (b)^{1.079} - 0.930 (n)^{1.075}$$
(8)

Relationship for $\frac{d}{D_{50}}$ with b, n and $\frac{d}{S_{50}}$

$$\frac{d}{D_{50}} = 0.625 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.927 (b)^{1.079} - 0.930 (n)^{1.075}$$
(9)

Relationship for b with n, $\frac{d}{S_{50}}$ and $\frac{d}{D_{50}}$

$$b = 0.638 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.898 \left(\frac{d}{D_{50}}\right)^{1.113} - 0.930(n)^{1.075}$$
(10)

Relationship for n with $\frac{d}{S_{50}}$, $\frac{d}{D_{50}}$ and b

$$n = 0.628 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.898 \left(\frac{d}{D_{50}}\right)^{1.113} - 0.927 (b)^{1.079}$$
(11)

Large Scale Roughness

Relationship for n with $\frac{d}{D_{50}}$, C, b and $\frac{d}{S_{50}}$

$$n = 0.492(C)^{0.998} - 0.898 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.927(b)^{1.079} - 0.898 \left(\frac{d}{D_{50}}\right)^{1.113}$$
(12)

Relationship for C with $\frac{d}{S_{50}}$, b and $\frac{d}{D_{50}}$

$$C = 3.736 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.898 \left(\frac{d}{D_{50}}\right)^{1.113} - 0.927 (b)^{1.079}$$
(13)

Relationship for $\frac{d}{S_{50}}$ with b, $\frac{d}{D_{50}}$ and C

$$\frac{d}{S_{50}} = 0.473(C)^{0.998} - 0.927(b)^{1.079} - 0.898\left(\frac{d}{D_{50}}\right)^{1.113}$$
(14)

Relationship for b with $\frac{d}{S_{50}}$, $\frac{d}{D_{50}}$ and C

$$b = 0.492(C)^{0.998} - 0.898 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.898 \left(\frac{d}{D_{50}}\right)^{1.113}$$
(15)

Relationship for
$$\frac{d}{D_{50}}$$
 with $\frac{d}{S_{50}}$, b and C
$$\frac{d}{D_{50}} = 0.488(C)^{0.998} - 0.898 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.927(b)^{1.079}$$
(16)

Mathematical Formulation for C

Substituting $\frac{d}{S_{50}}$, n, b, $\frac{d}{D_{50}}$ from equations (8), (9), (10), (11), in equation (7) we get $C = 3.744 \left\{ 1.637 \left(\frac{d}{D_{50}}\right)^{1.113} - 0.927 (b)^{1.079} - 0.0.930 (n)^{1.075} \right\}^{1.114}$ $- 0.930 \left\{ 0.628 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.898 \left(\frac{d}{D_{50}}\right)^{1.113} - 0.927 (b)^{1.079} \right\}^{1.075}$

www.iaset.us

editor@iaset.us

$$-0.927 \left\{ 0.638 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.898 \left(\frac{d}{D_{50}}\right)^{1.113} - 0.930(n)^{1.075} \right\}^{1.079}$$
$$-0.898 \left\{ 0.625 \left(\frac{d}{S_{50}}\right)^{1.114} - 0.927(b)^{1.079} - 0.0.930(n)^{1.075} \right\}^{1.113}$$
$$= 3.744 \{4.161\}^{1.114} - 0.930 \{0.059\}^{1.075} - 0.927 \{0.523\}^{1.079} - 0.898 \{2.559\}^{1.113}$$
$$= 18.328 \cdot 0.044 \cdot 0.461 \cdot 2.555$$
$$= 18.328 \cdot 3.060 = 15.268$$
$$= 15.274$$

Hence equation is satisfied.

Mathematical Formulation for n

Substituting the values of C, $\frac{d}{S_{50}}$, b and $\frac{d}{D_{50}}$ from equations 13, 14, 15 and 16 in equation 12 we will have

$$n = 0.492 \left\{ 3.736 \left(\frac{d}{S_{50}} \right)^{1.114} - 0.898 \left(\frac{d}{D_{50}} \right)^{1.113} - 0.927 (b)^{1.079} \right\}^{0.998} - 0.898 \left\{ 0.473 (C)^{0.998} - 0.927 (b)^{1.079} - 0.898 \left(\frac{d}{D_{50}} \right)^{1.113} \right\}^{1.114} - 0.927 \left\{ 0.492 (C)^{0.998} - 0.898 \left(\frac{d}{S_{50}} \right)^{1.114} - 0.898 \left(\frac{d}{D_{50}} \right)^{1.113} \right\}^{1.079} - 0.898 \left\{ 0.488 (C)^{0.998} - 0.898 \left(\frac{d}{S_{50}} \right)^{1.114} - 0.927 (b)^{1.079} \right\}^{1.113}$$

Hence

$$n = 0.492 \{ 15.278 \}^{0.998} - 0.898 \{ 4.169 \}^{1.114} - 0.927 \{ 0.519 \}^{1.079} - 0.898 \{ 2.558 \}^{1.113}$$

= 7.476-4.405-0.457-2.554=7.416
= 0.060 \approx 0.057

Impact Factor (JCC): 2.6676

CONCLUSIONS

There is 2.727 times more roughness for 2.0 inch roughness bed as compared to 0.75 inch roughness bed with respect to $\frac{d}{D_{50}}$. There is 1.668 times more chezy's resistance coefficient for 0.75 inch roughness bed as compared to

2.0 inch roughness bed. There is 1.895 times lesser Manning's roughness coefficient for 0.75 inch roughness bed. There is 1.781 times more function of effective roughness concentration for 0.75 inch roughness bed as compared to 2.0 inch roughness bed. There is 3.072 times more relative submergence for 0.75 inch roughness bed as compared to 2.0 inch roughness bed.

REFERENCES

- A Caroglu, E. R (1972) "Friction factors is solid material systems "J. Hydraulic Div. Am. SOC. Civ. Eng, 98 (HY 4), 681 – 699
- Alam, A. M. Z. and Kennedy J. F (1969)" Friction factors for flow in sand bed channels "J Hydraulic Div. Am. SOC Civ. Eng 95(HY 6), 1973 – 1992
- Ben Chie Yen F. (January 1.2002) "Open channel flow resistance" Journal of the Hydraulic Engg. Vol. 128, No – 1 ASCE, PP, 20 – 39
- Bray, D. I. (1979) "Estimating average velocity in gravel bed rivers "J Hydraulic Div. Am. SOC Civ. Eng. 105 (HY 9), 1103 – 1122
- Dey S, Raikar R.V. (2007) "Characteristic of loose rough boundary streams at near threshold" Journal of Hydraulic Engg. ASCE 133(3), 288-304
- Griffiths, G.A.(1981) "Flow resistance in course gravel bed rivers "J. Hydraulic Div. An soc. Civ. Eng. 107 (HY - 7), 899 - 918
- 7. Hey R.D (1979) "Flow resistance in gravel bed rivers "J Hydraulic Div Am SOC CIV Eng, 105 (HY 4), 365 379.
- James C. Batharst (December 1981) "Resistance Equation for Large Scale Ranghnen" Journal of the Hydraulics Division, American Society of Civil Engineers, Vol. 107 NO HY 12, PP 1593-1613.
- James C. Bathurst (December 1978) "Flow resistance of large-scale roughness" Journal of the Hydraulic Division Vol. 104 NO 12 PP 1587-1603
- J. Aberle and G. M. Smart (2003) "The influence of roughness structures on flow resistance on steep slopes", Journal of Hydraulic Research Vol. 41, Issue 3, Available online 01 Feb 2010, 259-269
- Lovera, F. and kennedy J. F (1969) "Friction factors for flat bed flows in sand channel" J Hydraulic Div, Am. Soc. Civ Eng 95 (HY 4) 1227–1234.
- Petryk, S. and shen, H. W (1971) "Direct measurement of sheer strem in a flume, "J Hydraulic Div. Am. SOC. Civ. Eng. 97(HY – 6), 883 – 887

- 13. Thompson, S. M. and Campbell, P. L.(1979) "Hydraulics of a large channel paved with boulders" J. Hydraulics Research, 17(4), 341-354
- 14. Van RiJn, L. C. (1982), "Equivalent roughness of alluvial bed" J Hydraulics Div, Am, SOC. Civ. Eng. 108 (HY10), 1215-1218
- Whiting P. J; and Dietrich W. E. (1990) "Boundary Shear Stress and roughness over mobile alluvial beds" J Hydraulic Engg 116(12), 1495-01511

APPENDICES - NOTATION

The following symbols are used in this paper

$\frac{A_w}{Wd'}$	=	Relative roughness area.
$A_{\rm w}$	=	Wetted roughness-cross sectional area.
А	=	Flow cross sectional area = Wd.
b	=	Function of effective roughness concentration.
С	=	Chezy's resistance coefficient.
d	=	Mean depth of flow in meters
d'	=	Depth of bed datum in meters.
D ₅₀	=	The size of median axis which is bigger than or equal to 50% of median axis.
D ₈₄	=	The size of median axis which is bigger than or equal to 84% of median axis.
$\frac{d}{S_{50}}$	=	Relative submergence
n	=	Manning's roughness coefficient
Р	=	Wetted Perimeter
Q	=	Discharge in cubic meters per second
R	=	Hydraulic radius = $\frac{A}{p} = \frac{Wd}{W+2d}$
Р	=	Wetted Perimeter
S ₅₀	=	The size of the short axis which is bigger than or equal to 50% of short axis.
S	=	Channel slope

Large Scale Roughness

V	=	Mean velocity of flow in meters per second.

$$W = Width of the channel = 1.168m$$

Formula Used

$$A+A_{w} = Wd'$$

$$\frac{A_{w}}{Wd'} = \left(\frac{w}{d}\right)^{-b}$$

$$V = \frac{1.49}{n}R^{\frac{2}{3}}S^{\frac{1}{2}}$$

$$V = C\sqrt{RS}$$